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A NOTE ON SOUND RADIATION FROM A CONFINED SOURCE
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This note presents an expression of radiated sound pressure from a con"ned source in
terms of the spherical harmonic functions. In the expression, the spherical harmonic
functions are interpreted as the radiating modes and their superposition results in various
radiation patterns. The orthonormal property of the radiating modes also allows a general
expression of the multipole radiated sound power.
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1. INTRODUCTION

The sound radiation from a con"ned source is a textbook subject. The properties of
multiple radiation in the far "eld are also well known, and often illustrated by the sound
radiation of a point source and superposition of multiple point sources. A general
expression of the sound radiation from a con"ned source is available [1}3] in terms of the
spatial derivatives of the free-"eld Green's function
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The xyth component of the quadrupole strength tensor Q
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While the calculation of the radiated sound pressure from the volume velocity density q
v
(r
0
)

of the source is possible, the directivity and basic components of the radiating sound "eld by
equation (1) are not explicit. On the other hand, orthonormal functions of the elevation and
azimuth angles (h, /), such as spherical harmonics functions, have been used to express the
multipole expansion of the static potential "eld from a con"ned electrical charge
distribution [4]. The 2l multipole of the static "eld has an amplitude relating to the
observation point r by 1/r l`1, where l"0, 1, 2,2. In acoustics, Morse and Ingard [1] have
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used spherical harmonics and spherical Hankel functions to express the multipole "eld of
sound radiation from vibrating spheres. Their expression is not suitable for a distributed
volume velocity because the spherical Hankel functions are singular at the origin of the
co-ordinates.

Nevertheless, the sound radiation from the spheres can be decomposed into a few basic
radiating modes described by the spherical harmonics. As a result, the discussion of the
radiating "eld and power may be uni"ed in terms of the basic radiating modes.

In this note, an expansion of the radiating sound from a con"ned source is presented by
the spherical harmonics. The singularity problem at the origin is avoided as a new
expansion method has been used. The concept of radiating modes is illustrated by examples
of multipole sound radiation and the calculation of the multipole radiating power is
demonstrated.

2. RADIATED SOUND PRESSURE

The sound pressure in free "eld is obtained using the Green's function technique. The
steady state Green's equation and free-"eld Green's function leads to the expression of the
sound pressure in free space generated by the volume velocity density of the sound source
[1] as
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For a con"ned source distribution kr
0
@1, the sound "eld generated can be divided into

three regions in terms of the ratio between the observation location r and the wavelength
j of the sound wave:

(a) near "eld: r/j@1,
(b) middle "eld: r/j&1,
(c) far "eld: r/jA1.

In the near-"eld region (kr@1), the sound pressure distribution as a function of distance r is
highly dependent upon the distribution of sound source. Not only by the 1/r terms, the
sound pressure is also contributed by higher order terms such as 1/r l`1(1/r l`1l"1, 2,
3,2). In the far"eld region (krA1) however, the condition of rAr

0
allows the following

approximation:
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, /

0
) are the elevation and azimuth angles of the source position vector r

0
. As a result

the far"eld sound pressure can be expressed as
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which is the typical radiating "eld with magnitude decaying as a function of r~1.
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3. MULTIPLE DESCRIPTION OF RADIATING SOUND FIELD

The far"eld sound radiation from a con"ned source is then Taylor-expanded in terms of
the non-dimensional size of the sound source kr

0
:
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To show the directivity property of (cosH)l, the relationship between Legendre polynomials
P
l
(cosH) and (cosH)l is investigated. According to the de"nition of Legendre polynomials,

they are related to x"cosH by
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s
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"[n/2]![m/2] and [ ] represents the nearest integer in the bracket.
Inverting the coe$cient matrices in equation (10) gives rise to
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Substituting equation (12) into equation (9) and collecting the coe$cients of P
l
, the far"eld

sound pressure becomes
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For con"ned source kr
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@1, the a

l
are approximated by the "rst term in equation (15):
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Taking the monopole, dipole and quadrupole radiation (l"0, 1, 2) as an example, the a
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are

approximated as
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Finally, using the spherical harmonic functions for the Legendre polynomials, we obtained
the multipole expression of the radiating sound "eld
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where the coe$cients of the (l, m)th order radiating modes are
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The spherical harmonic function is de"ned as
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with x"cos h. When m is a negative number, the following relationship is used:
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In equation (18), the monopole, dipole and quadrupole sound radiation are, respectively,
represented by the radiation modes described by the spherical harmonic functions when
l"0 (m"0), l"1 (m"!1, 0, 1), and l"2 (m"!2, !1, 0, 1, 2). Table 1 shows the
corresponding radiating modes and their directivities. Examples of sound radiation from
point sources are used to illustrate the use of the radiating modes.
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3.1. MONOPOLE SOUND RADIATION

The volume velocity density of a point source with volume velocity Q at r
0
"0 is
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With such a source distribution, the non-zero solution of equation (19) is
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which gives rise to the radiated monopole sound pressure
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3.2. DIPOLE SOUND RADIATION

Figure 1 shows a distribution of two point sources with equal strength but opposite
phase. They are located along the Z-axis at distance of d. The volume velocity density of the
sources is
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The non-zero term of equation (19) is
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Thus, the radiated sound pressure has the expression of
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which has the directivity of a dipole.
If the source distribution is along the >-axis as shown in Figure 2, the volume velocity

density is
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Figure 1. Spherical co-ordinates and a dipole sound source distribution.

Figure 2. Dipole source distribution in the >-axis.
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The corresponding non-zero terms of equation (19) are
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Thus, the resultant sound "eld is
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which also shows a dipole directivity. Note that the dumbbell radiation directivity in the
>-axis is due to the superposition of two doughnut-shaped radiating modes (>
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(h, /) and
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3.3. QUADRUPOLE SOUND RADIATION

Both longitudinal (Figure 3(a)) and lateral (Figure 3(b)) quadrupoles are also special cases
of source distribution according to equation (19).

The source distributions of the longitudinal quadrupole is
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Figure 3. (a) A longitudinal quadrupole and (b) a lateral quadrupole.
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For longitudinal quadrupole, the non-zero q
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Thus, the radiated sound pressure is
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The directivity patterns of the longitudinal and lateral quadrupole sound radiation are
shown in Table 2.

3.4. SOUND RADIATION BY A TRIPOLE SOUND SOURCE

According to Huygens' principle [5], each point on a wavefront may be regraded as
a source (Huygens' source) of secondary waves for the new wavefront at a later time. The
TABLE 2

Directivity distribution of a longitudinal and a lateral quadrupole sound radiation

Longitudinal quadrupole radiation
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strength of the Huygens' source consists of a dipole term due to the pressure on the surface
of the wavefront, and a monopole term due to the air particle velocity. Using the
Helmholz}Kirchho! integral for sound pressure in a space enclosed by the wavefront
surface and the surface at the in"nity, the radiated sound pressure by a Huygens' source at
the wavefront r@ away from a point source is [6]
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where r is the distance from Huygens' source to the observation point in the far"eld (krA1),
h is an angle between r@ and r and A@ is proportional to the sound pressure at r@. The sound
radiation directivity can be interpreted as the superposition of sound "eld radiated by
a dipole and a monopole mode witht he dipole vector direction perpendicular to that of r@:
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Figure 4 shows the magnitude directivity of a Huygens' source for kr @A1.
A tripole sound source has been realized by Tian and Sha [6] in a limited range of

frequency. In their design, two loudspeakers were used. One of them within an enclosure
was used as the monopole source and the other coupled with two short tubes of proper
length in its front and rear surfaces was used as a dipole source. The tubes' diameter are the
same as that of the loudspeakers.

4. SOUND POWER

The sound power radiated from a con"ned source source is calculated by the far"eld
sound pressure and air particle velocity v

r
in the radius direction:
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Figure 4. Magnitude directivity of a Huygens source.
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The orthogonality of the spherical harmonic functions
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allows the multipole radiating power to be expressed as
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5. CONCLUSIONS

In this note, the radiating "eld from con"ned sound sources is described by radiating
modes, which are mathematically orthonormal and representing the basic components of
the radiation directivity. The description becomes possible because of the use of a novel
expansion of the exponential term in equation (8) by Legendre polynomials (see equation
(10)}(17)). Using this description, the radiating "eld from con"ned sound sources can be
readily analyzed by the coe$cients of the radiating modes q

lm
. A general expression for

multiple radiating power is also obtained.
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